Contactors

CT1215/04, CT1230/04
CT1215/08, CT1230/08
CT1215/11, CT1230/11

1 pole
AC and bi-directional DC
NO contactors for
400 A, 800 A and 1,100 A

Catalogue C21.en
With the double pole CT series contactors Schaltbau expands its product line of state-of-the-art power contactors. The outstanding technical feature is the innovative combination of electromagnetic and permanent-magnetic blowout technology for electric arc control. The successful combination of these two principles greatly improves both switching functionality, reliability and forms a practical and economically impressive device concept.

The CT contactor concept is flexible and can be adapted to suit the needs of the customer. Due to its technical characteristics, its economical advantages, its compactness and versatility, the CT power contactor series is simply predestined for use in industrial and railway applications alike. The contactors are especially suited for use in locomotives, cranes, and converters of wind turbines and PV installations, but also in mining.

Features
- Innovative design:
 - 1 pole NO contactors, DC bidirectional or AC
 - Contactors for 400 A, 800 A or 1,100 A current rating
 - Nominal voltage 1,500 V or 3,000 V
 - Double-break contacts
 - Reliable shutdown of smaller currents at higher voltages – no critical current range
 - Compact, rugged design

- Universal use:
 - Drive system with coil tolerance according to railway standards
 - CCC approval for CT12xx/04, CT12xx/08 and CT12xx/11
 - UL approval available for selected versions
 - A list of all UL types can be found here: schaltbau.info/ct-group-en

- Excellent insulation properties:
 - Reinforced insulation between main circuit and control circuit/auxiliary circuit

- Easy maintenance:
 - Easy inspection and replacement of main contact tips
 - Easy to replace arc chute

Applications
- Main contactor for:
 - Traction converters
 - Inverters for auxiliary equipment

- Contactor for:
 - Field circuits of motors
 - Conventional resistor based traction units (retrofit)
 - Starter and compressor motors
 - Heating circuits

- Contactor for a host of industrial and railway applications:
 - Locomotives
 - Cranes
 - Mining

CT1215/04, CT1230/04
Double pole power contactors for AC and DC, 400 A, 1,500 V or 3,000 V

CT1215/08, CT1230/08
Double pole power contactors for AC and DC, 800 A, 1,500 V or 3,000 V

CT1215/11, CT1230/11
Double pole power contactors for AC and DC, 1,100 A, 1,500 V or 3,000 V

CT series – revolutionary method of arc quenching for both DC and AC

Arc chutes
Ceramic plates for effectively extinguish and cooling the arc

Main terminals
Heat sink on both main terminals only with the 1,100 A version

Electronic coil controller
Control of the double winding coil only for the 800 A and 1,100 A versions

Coil terminals

Accesories
- Pole plates of electro-magnetic blowout with looking function arc chute to magnetic drive
- Pole plates of permanent-magnetic blowout
- Magnetic drive
- Auxiliary contact block
- Safety looking release slider to unlock arc chute

(The above text is a condensed version of the original document, focusing on the key points and removing excessive details for clarity.)
Competence

The success of a product is owed to its quality

The Schaltbau product line is clearly defined and keeps up with the technological requirements of today's markets. Behind every individual contactor you will find decades of experience in engineering and manufacturing. Contactors are remote-controlled electrical switches with which high currents and voltages can be switched. A control current activates the magnetic drive that closes and reopens the contacts of the load current circuit. The moment of switching off represents a special challenge. The air between the opening contacts becomes ionised and an electric arc is created in which the current continues to flow. The air between the contacts offers a great deal of electrical resistance, which creates temperatures of up to 10,000 °C. To prevent the contacts or even the entire device from being thermal destroyed, the electric arc must be driven out of the contact area into arc chambers to be stretched and cooled until it loses energy and finally dies out. In order to extinguish the electric arc within a few milliseconds we have incorporated some sophisticated solutions in our contactors. This experience helps us to develop reliable contactors for power plants, computer centres and electrically powered vehicles.

Ordering code

Example: **CT1230/04 H 110ET-00**

<table>
<thead>
<tr>
<th>Series, contact configuration</th>
<th>Nominal voltage</th>
<th>Conv. thermal current</th>
<th>Mounting position</th>
<th>Coil voltage</th>
<th>Coils tolerance</th>
<th>Coils suppression</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT11 1 pole NO contactor*1</td>
<td>15</td>
<td>04</td>
<td>H</td>
<td>24/36/48/72/110 V DC</td>
<td>–30 % … +25 %</td>
<td>T</td>
</tr>
<tr>
<td>CT12 2 pole NO contactor</td>
<td>30</td>
<td>08</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT12 2 pole NO contactor</td>
<td>11</td>
<td>11</td>
<td>N</td>
<td></td>
<td></td>
<td>CM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auxiliary switches, number and type</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3 screw-type terminals</td>
</tr>
</tbody>
</table>

*1 See catalogue C20
*2 Upon request
*5 See also catalogue D70
*6 See also catalogue D26

Do you need support for a special application?
Please contact us! We would be glad to assist you in the selection of the contactor that suits your application best.

Standards

IEC 60077-2 Railway applications – Electric equipment for rolling stock
IEC 62497-1 Railway applications – Insulation coordination – Part 1: Basic requirements – Clearances and creepage distances for all electrical and electronic equipment
IEC 61373 Railway applications – Rolling stock equipment – Shock and vibration tests

IEC 60947-4-1 Low-voltage switchgear and controlgear – Part 4-1: Contactors and motor-starters – Electromechanical contactors and motor-starters
IEC 62236-3-2 Railway applications – Electromagnetic compatibility – Part 3-2: Rolling stock – Apparatus
Specifications: Double pole power contactors for AC and DC, Nominal voltage = 1,500 V

CT series

<table>
<thead>
<tr>
<th>Series</th>
<th>CT1215/04</th>
<th>CT1215/08</th>
<th>CT1215/11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of voltage</td>
<td>DC (bidirectional), AC (f ≤ 60 Hz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of poles, configuration</td>
<td>2x SPST-NO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrical ratings of main circuit to IEC 60077-2

<table>
<thead>
<tr>
<th>Nominal voltage</th>
<th>Ue</th>
<th>Rated operating voltage</th>
<th>Ue</th>
<th>Rated insulation voltage</th>
<th>Un</th>
<th>Rated impulse withstand voltage</th>
<th>Ud</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,500 V</td>
<td>1,800 V</td>
<td>3,000 V</td>
<td>15 kV</td>
<td><9 kV (T2 = 40 ms)</td>
<td>300 A</td>
<td>450 A</td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>Ue</td>
<td>Rated operating voltage</td>
<td>Ue</td>
<td>Rated insulation voltage</td>
<td>Un</td>
<td>Rated impulse withstand voltage</td>
<td>Ud</td>
</tr>
<tr>
<td></td>
<td>1,500 V</td>
<td>1,800 V</td>
<td>3,000 V</td>
<td>15 kV</td>
<td><9 kV (T2 = 40 ms)</td>
<td>300 A</td>
<td>450 A</td>
</tr>
</tbody>
</table>

Switching overvoltages

- AC, Ue = 1,800 V:
 - @ Ue = 1,800 V:
 - <9 kV (T2 = 40 ms) / 9 kV (T2 = 40 ms) / 9 kV (T2 = 40 ms)

Conventional thermal current

- Ith 400 A
- Ith 800 A
- Ith 1,100 A

Rated short-time withstand current

<table>
<thead>
<tr>
<th>Current rating per pole, T < 100 ms</th>
<th>5 kA (T < 100 ms)</th>
<th>8 kA (T < 100 ms)</th>
<th>8 kA (T < 100 ms)</th>
</tr>
</thead>
</table>

Rated impulse withstand voltage

- UNi 15 kV
- UNi 15 kV
- UNi 15 kV

Rated operating voltage

- Ur 1,800 V
- Ur 1,800 V
- Ur 1,800 V

Rated short-circuit breaking capacity

- AC, Ue = 3,600 V (T2 = 15 ms): 1,000 A / 700 A
- AC, Ue = 1,800 V (T2 = 15 ms): 1,000 A / 700 A
- AC, Ue = 1,800 V (T2 = 15 ms): 1,000 A / 700 A

Rated insulation voltage

- UNm 3,000 V
- UNm 3,000 V
- UNm 3,000 V

Component category

- A2
- A2
- A2

Weight

- 11 kg
- 18 kg
- 20 kg

Additional Notes:

1 With frequent switching under load the conv. thermal current Ith must be limited to 350 A.

2 Preliminary values.

3 «Observe dimensioning instructions for CT1230/08 Series on page 10.

4 a1 and b0 according to IEC60077-2 (Aux. contact b0 “well open” or mirror contact for feedback circuits of safety-relevant controls according to DIN EN 13849-1).

5 For frequent load switching use contactors for vertical mounting (red lock bars).

Subject to change
Specifications

Double pole power contactors for AC and DC, Nominal voltage = 3,000 V

CT series

<table>
<thead>
<tr>
<th>Series</th>
<th>I</th>
<th>CT1230/04</th>
<th>I</th>
<th>CT1230/08</th>
<th>I</th>
<th>CT1230/11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of voltage</td>
<td>DC (bidirectional), AC (f ≤ 60 Hz)</td>
<td>2x SPST-NO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of poles, configuration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal voltage</td>
<td>U_n</td>
<td>3,000 V</td>
<td>3,000 V</td>
<td>3,000 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated operating voltage</td>
<td>U_r</td>
<td>3,600 V</td>
<td>3,600 V</td>
<td>3,600 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated insulation voltage</td>
<td>U_{in}</td>
<td>4,800 V</td>
<td>4,800 V</td>
<td>4,800 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated impulse withstand voltage</td>
<td>U_{im}</td>
<td>25 kV</td>
<td>25 kV</td>
<td>25 kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollution degree / Overvoltage category</td>
<td>PD3 / OV2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching overvoltages</td>
<td>@ $U_n = 1,800$ V</td>
<td>< 1.4 kV</td>
<td>< 1.5 kV</td>
<td>< 1.5 kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional thermal current</td>
<td>I_{th}</td>
<td>400 A *</td>
<td>800 A</td>
<td>1,000 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component category</td>
<td>A2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-circuit making capacity, new/used contacts</td>
<td>3.5 kA / 5 kA</td>
<td>4 kA / 8 kA</td>
<td>4 kA / 8 kA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated operating current</td>
<td>(2 poles in series, @ operational frequency C2)</td>
<td>350 A (interpolated value)</td>
<td>800 A</td>
<td>800 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** Rated operating current**</td>
<td>(per pole, @ operational frequency C2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated short-circuit breaking capacity</td>
<td>@ $U_n = 1,200$ V</td>
<td>1,200 A</td>
<td>2,000 A</td>
<td>2,000 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rating degree / Overvoltage category</td>
<td>PD3 / OV2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated short-circuit breaking capacity</td>
<td>@ $U_n = 1,800$ V</td>
<td>750 A</td>
<td>1,200 A *</td>
<td>1,200 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rating degree / Overvoltage category</td>
<td>PD3 / OV2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated short-circuit breaking capacity</td>
<td>@ $U_n = 3,600$ V</td>
<td>2,900 A</td>
<td>3,400 A</td>
<td>3,400 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated short-time withstand current</td>
<td>I_{cw} per Pol, T < 100 ms</td>
<td>6 kA</td>
<td>8 kA *</td>
<td>8 kA *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>AgSnO 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact material</td>
<td>AgSnO 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminals / Torque</td>
<td>M10 / 16 ... 20 Nm</td>
<td>M12 / 24 ... 30 Nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated short-time withstand current</td>
<td>I_{cw} per Pol, T < 100 ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auxiliary contacts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number and type</td>
<td>1x S870 (a), 1x S870 (b), 2x S826 or 4x S826 *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching capacity</td>
<td>16 A @ 24 V DC; 13.5 A @ 80 V DC; 7 A @ 110 V DC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screws M3 / Flat tabs 6.3 x 0.8 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical endurance</td>
<td>> 2 million operating cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Operating temperature / Storage temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude / Humidity (EN 50025-1)</td>
<td>-40°C ... +70°C / -40°C ... +85°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>13 kg</td>
<td>21 kg</td>
<td>23 kg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* With frequent switching under load the conv. thermal current I_{th} must be limited to 350 A.

1 Preliminary values

2 Observe dimensioning instructions for CT1230/08 Series on page 10

3 a and b according to IEC60077-2 (Aux. contact b0 - "well open" or mirror contact for feedback circuits of safety-relevant controls according to DIN EN 13849-1)

4 For frequent load switching use contactors for vertical mounting (red lock bars). Subject to change
CARE!

Caution

Device contains unprotected active piece parts.
Device contains unprotected non-active piece parts which may interact with active piece parts.
Please adhere to corresponding safety regulations before touching the device.

CT1215/04 Dimension diagram double pole NO contactor for 1,500 V / 400 A

CT series

CT1215/08 Dimension diagram double pole NO contactor for 1,500 V / 800 A

CT series

* Interrupting at maximum capacity could require larger clearance!
Feel free to contact us, we will be happy to assist you with dimensioning.

Dimensions in mm / Subject to change
CARE!

Caution
Device contains unprotected active piece parts.
Device contains unprotected non-active piece parts which may interact with active piece parts.
Please adhere to corresponding safety regulations before touching the device.

* Interrupting at maximum capacity could require larger clearance!
Feel free to contact us, we will be happy to assist you with dimensioning.

Subject to change / Dimensions in mm
CT1215/11 Dimension diagram double pole NO contactor for 1,500 V / 1,100 A

- **Versions according to railway standard for railway applications or with mirror contact for industrial applications**

 CT1215/04, CT1230/04

 Main contacts 2x NO, \(I_{th} = 400 \text{ A} \)

 Aux. contacts (EN 60077) 2 x S826, 1 x S870(b0), 1 x S870(a1)

 Magnetic drive Coil suppression «T»

 Circuit diagram

 ![Circuit diagram CT1215/04, CT1230/04](image)

 - **CT1215/08, CT1230/08, CT1215/11, CT1230/11**

 Main contacts 2x NO, \(I_{th} = 800 \text{ A} / 1,100 \text{ A} \)

 Aux. contacts (EN 60077) 2 x S826, 1 x S870(b0), 1 x S870(a1)

 Magnetic drive Coil suppression «CM»

 Circuit diagram

 ![Circuit diagram CT1215/08, CT1230/08, CT1215/11, CT1230/11](image)

- **Versions for industrial applications without mirror contact**

 CT1215/04, CT1230/04

 Main contacts 2x NO, \(I_{th} = 400 \text{ A} \)

 Auxiliary contacts 4 x S826

 Magnetic drive Coil suppression «T»

 Circuit diagram

 ![Circuit diagram CT1215/04, CT1230/04](image)

 - **CT1215/08, CT1230/08, CT1215/11, CT1230/11**

 Main contacts 2x NO, \(I_{th} = 800 \text{ A} / 1,100 \text{ A} \)

 Auxiliary contacts 4 x S826

 Magnetic drive Coil suppression «CM»

 Circuit diagram

 ![Circuit diagram CT1215/08, CT1230/08, CT1215/11, CT1230/11](image)

*Interrupting at maximum capacity could require larger clearance!
Feel free to contact us, we will be happy to assist you with dimensioning.*
CT1230/11 Dimension diagram double pole NO contactor for 3,000 V / 1,100 A

Mounting holes

- **Double pole NO contactor, CT1215/04, CT1230/04 series**

- **Double pole NO contactor, CT1215/08, CT1230/08 series**

- **Double pole NO contactor, CT1215/11, CT1230/11 series**

The thickness of the mounting plate is:

- **CT1215/04, CT1230/04**: 8 mm
- **CT1215/08, CT1230/08**: 10 mm
- **CT1215/11, CT1230/11**: 10 mm

* Interrupting at maximum capacity could require larger clearance! Feel free to contact us, we will be happy to assist you with dimensioning.
Mounting instructions

Start up
Before initial start up make sure that:
- the arc chute is mounted properly and the lock bars are locked in position
- the protective covers are mounted properly
- the contactor is earthed (PE terminal on mounting plate)

Coil suppression
Coil suppression \(T_s \), suppressor diode: Coil suppression for reducing surges when the coil is switched off is optimally attuned to the contactor’s switching behaviour. Caution: Parallel connection with a simple diode will override the existing coil suppression.

Taking off the arc chute:
1. Push both release sliders in the direction indicated by the arrow and hold them in this position.
2. Move all four levers for unlocking the arc chute in the direction indicated by the arrow.
3. The arc chute incorporating the stationary main contacts can now be lifted from the contactor.

Mounting the arc chute:
1. Mount the arc chute onto the magnetic drive. Note: The arc chute has keys on one side to fit into slots on the corresponding side of the contactor. So you cannot mount it the wrong way round.
2. Move all four levers for unlocking the arc chute into the original position.
3. Check: The arc chute is locked properly, if all four lock bars click into place and cannot be opened without pushing the release slider.

Disassembly of protective covers:
- Protective cover auxiliary switches: Dismount arc chute first, then loosen knurled head screws and remove protective cover.
- Protective cover coil terminals: Unscrew cover and take it off.

Assembly of protective covers:
- Protective cover auxiliary switches: Position protective cover and screw in both knurled head screws. Then mount arc chute.
- Protective cover coil terminals: Introduce protective cover into the groove of the coil drive and locate in position. Then tighten screws.

Dimensioning instructions
- Do you need some help? For selecting the contactor that suits your application best do not hesitate to ask our advice.
- For connection of the main contacts Schaltbau recommends the use of busbars with the following dimensioning:
 - Conv. thermal current \(I_{th} = 400 \, A \): 60 x 5 mm
 - Conv. thermal current \(I_{th} = 800 \, A \): 80 x 8 mm
- Observe clearance of live parts to arc chute! Refer to dimension drawings on page 4 and 5 for data.
- For high switching loads at \(U_{d} \geq 3,000 \, V \) DC a special design CT1130/08 + 200 with adjusted blow-out coils is available.

Spare parts

<table>
<thead>
<tr>
<th>Items</th>
<th>Spare part, description</th>
<th>CT1215/04</th>
<th>CT1230/04</th>
<th>Ordering code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stationary contact, complete – order 2 per pole</td>
<td>MC CT1015/04</td>
<td>MC CT1030/04</td>
<td>MC CT1015/08</td>
</tr>
<tr>
<td>1</td>
<td>Insulation plate</td>
<td>IP CT1015/04</td>
<td>IP CT1030/04</td>
<td>IP CT1015/08</td>
</tr>
<tr>
<td>1</td>
<td>Contact bridge with mounted contact holder, mounting position »H«</td>
<td>CBH CT1015/04</td>
<td>CBH CT1030/04</td>
<td>CBH CT1015/08</td>
</tr>
<tr>
<td>1</td>
<td>Contact bridge with mounted contact holder, mounting position »V«</td>
<td>CBV CT1015/04</td>
<td>CBV CT1030/04</td>
<td>CBV CT1015/08</td>
</tr>
<tr>
<td>1</td>
<td>Ceramic protection inserts – order 2 per pole</td>
<td>PI CT1030/04</td>
<td>PI CT1000/08</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Protective cover coil terminals</td>
<td>CC CT1030/04</td>
<td>CC CT1030/08</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Protective cover aux. switches</td>
<td>CA CT1030/04</td>
<td>CA CT1030/08</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Snap-action switch (SPDT)</td>
<td>SB26 a L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Contact block of 2x S870 (momentary switches a1, b0)</td>
<td>AS S870</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When ordering spare parts, please always give the exact series as well as the article number of the contactor; see type plate.
Mounting positions

The colour of the lock bars is an indication of the correct mounting position:

- **Horizontal**: Yellow lock bars ➤ Mounting position »H«
- **Vertical**: Red lock bars ➤ Mounting position »V«
- **Horizontal/vertical**: Blue lock bars ➤ Mounting position »H« or »V«

Horizontal mounting:

![Horizontal mounting diagram]

Vertical mounting:

![Vertical mounting diagram]

Maintenance instructions

- CT series contactors are maintenance free with normal use.
- Make regular inspections once or twice a year. So when installing the contactor, make sure that there is enough space to remove and replace the arc chute with ease and that the main contacts become accessible for inspection.
- Frequent switching or switching under high load may lead to increased wear of the main contacts. In this case replacement of the main contacts may become necessary. For detailed information please refer to our manual.

Safety instructions

- The switching device meets the requirements of basic insulation. Make sure the plate onto which the drive of the contactor is mounted is earthed in a vibration resistant way.
- Do not use contactor without properly mounted arc chute.
- The contactor has unprotected live parts and carries a label that warns of the hazard. This caution must be observed and the label must not be removed in any way.
- The required clearance of live parts to ground and other parts of the contactor is to be observed as well as the safety regulations of the applicable standards.
- Switching at maximum breaking capacity might require larger clearance! Do not hesitate to ask our advice for dimensioning.
- Do not use contactor without protective covers (for coil terminals and auxiliary switches).
- Coil suppression for reducing surges when the coil is switched off is optimally attuned to the contactor’s switching behaviour. The existing opening characteristic must not be negatively influenced by parallel connection with an external diode.
- Improper handling of the contactor, e.g. when hitting the floor with some impact, can result in breakage, visible cracks and deformation.

Defective parts must be replaced immediately!
Electrical Components and Systems for Railway Engineering and Industrial Applications

Connectors
- Connectors manufactured to industry standards
- Connectors to suit the special requirements of communications engineering (MIL connectors)
- Charging connectors for battery-powered machines and systems
- Connectors for railway engineering, including UIC connectors
- Special connectors to suit customer requirements

Snap-action switches
- Snap-action switches with positive opening operation
- Snap-action switches with self-cleaning contacts
- Enabling switches
- Special switches to suit customer requirements

Contactors
- Single and multi-pole DC contactors
- High-voltage AC/DC contactors
- Contactors for battery powered vehicles and power supplies
- Contactors for railway applications
- Terminal bolts and fuse holders
- DC emergency disconnect switches
- Special contactors to suit customer requirements

Electrics for rolling stock
- Equipment for driver’s cab
- Equipment for passenger use
- High-voltage switchgear
- High-voltage heaters
- High-voltage roof equipment
- Equipment for electric brakes
- Design and engineering of train electrics to customer requirements