Contactors

CT1215/04, CT1230/04
CT1215/08, CT1230/08

Double pole power contactors for AC and DC

Catalogue C21.en
CT Series – revolutionary method of arc quenching for both DC and AC

With the new double pole CT series contactors Schaltbau expands its product line of state-of-the-art power contactors. The outstanding technical feature is the innovative combination of electromagnetic and permanent-magnetic blowout technology for electric arc control. The successful combination of these two principles greatly improves both switching functionality and reliability and forms a practical and economically impressive device concept.

- Compact, rugged innovative design
- Rated operating voltage 1,500 V or 3,000 V
- Double-break contacts, (normally open)
- 1, 2*, and 3*2 pole versions
- Easy inspection and replacement of main contact tips as well as arc chute
- Drive system with coil tolerance according to railway standards
- Functional insulation for main circuit
- Basic insulation between main circuit and protective earth
- Reinforced insulation between main circuit and control circuit / auxiliary circuit

The CT contactor concept is flexible and can be adapted to suit the needs of the customer. Due to its technical characteristics, its economical advantages, its compactness and versatility, the CT power contactor series is simply predestined for use in industrial and railway applications alike. The contactors are especially suited for use in locomotives, cranes, and converters of wind turbines and PV installations, but also in mining.

Double pole CT Series contactors comprise a number of various design versions catering to a wide range of uses, such as:
- **Main contactor for:** Traction converters and inverters for auxiliary equipment
- **Contactor for:** Field circuits of motors, conventional resistor based traction units (retrofit), starter and compressor motors, and heating circuits

Features

- **Compact, rugged innovative design**
- **Rated operating voltage 1,500 V or 3,000 V**
- **Double-break contacts, (normally open)**
- **1, 2*, and 3*2 pole versions**
- **Easy inspection and replacement of main contact tips as well as arc chute**
- **Drive system with coil tolerance according to railway standards**
- **Functional insulation for main circuit**
- **Basic insulation between main circuit and protective earth**
- **Reinforced insulation between main circuit and control circuit / auxiliary circuit**

Applications

- **Double pole CT Series contactors**
 - **Main contactor for:** Traction converters and inverters for auxiliary equipment
 - **Contactor for:** Field circuits of motors, conventional resistor based traction units (retrofit), starter and compressor motors, and heating circuits

Ordering code

Series CT, 2 pole

- **CT11** 1 pole NO contactor *
- **CT12** 2 pole NO contactor
- **CT13** 3 pole NO contactor *

Main contacts: Nominal voltage
- 15 \(U_n = 1,500 \text{ V} \)
- 30 \(U_n = 3,000 \text{ V} \)

Main contacts: Conventional thermal current
- 04 \(I_{th} = 400 \text{ A} \)
- 06 \(I_{th} = 600 \text{ A} \)
- 08 \(I_{th} = 800 \text{ A} \)
- 11 \(I_{th} = 1,100 \text{ A} \)
- 15 \(I_{th} = 1,500 \text{ A} \)

Mounting position
- **H** horizontal (lock bar yellow)
- **V** vertical (lock bar red)

Coil voltage
- 24 / 36 / 48 / 72 / 110 V DC

Example:

CT1230/04 H 110ET-00

- **Auxiliary contacts**
 - 00
 - 01
 - 02
 - 03

- **Surge suppression/type of coil**
 - T
 - CM

- **Coil tolerance**
 - -30% ... +25%

Note:

- Presented in this catalogue are only stock items which can be supplied in short delivery time.
- For some variants minimum quantities apply. Please do not hesitate to ask for the conditions.
- **Special variant:**
 - If you need a special variant of the contactor, please do not hesitate to contact us. Maybe the type of contactor you are looking for is among our many special designs. If not, we can also supply customized designs. In this case, however, minimum order quantities apply.

1
2
3
4.1
4.2
4.3
4.4
5
6.1
6.2
6.3
6.4
Specifications

Double pole power contactors for AC and DC

Series CT, 2 pole

<table>
<thead>
<tr>
<th>Series</th>
<th>CT1215/04</th>
<th>CT1220/04</th>
<th>CT1215/08</th>
<th>CT1220/08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of voltage</td>
<td>DC (bidirectional), AC (f < 60 Hz)</td>
</tr>
<tr>
<td>Main contacts, number of, configuration</td>
<td>2x NO</td>
<td>2x NO</td>
<td>2x NO</td>
<td>2x NO</td>
</tr>
<tr>
<td>Nominal voltage U_{n}</td>
<td>1,500 V</td>
<td>3,000 V</td>
<td>1,500 V</td>
<td>3,000 V</td>
</tr>
<tr>
<td>Rated operating voltage U_{k}</td>
<td>1,800 V</td>
<td>3,600 V</td>
<td>1,800 V</td>
<td>3,600 V</td>
</tr>
<tr>
<td>Rated insulation voltage U_{cm}</td>
<td>3,600 V</td>
<td>4,800 V</td>
<td>3,600 V</td>
<td>4,800 V</td>
</tr>
<tr>
<td>Rated impulse withstand voltage U_{i}</td>
<td>15 kV</td>
<td>25 kV</td>
<td>15 kV</td>
<td>25 kV</td>
</tr>
<tr>
<td>Switching surge overvoltage U_{s}</td>
<td>1,800 V</td>
<td>< 9 kV</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>U_{s}</td>
<td>3,600 V</td>
<td>---</td>
<td>< 15 kV</td>
<td>---</td>
</tr>
<tr>
<td>Conventional thermal current I_{th}</td>
<td>400 A 1</td>
<td>400 A 1</td>
<td>800 A</td>
<td>800 A</td>
</tr>
<tr>
<td>Component category (IEC 60077-2)</td>
<td>A2</td>
<td>A2</td>
<td>A2</td>
<td>A2</td>
</tr>
<tr>
<td>Short-circuit making capacity</td>
<td>2.5 kA (new contacts) / 5 kA (used contacts)</td>
<td>3.5 kA (new contacts) / 8 kA (used contacts) 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated operating current I_{e} (2 poles connected in series, at operational frequency C2)</td>
<td>DC, $U_{e}=1,200$ V (T2 = 15 ms)</td>
<td>450 A</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>U_{e}</td>
<td>1,800 V</td>
<td>800 A</td>
<td>1,200 A</td>
<td>1,400 A</td>
</tr>
<tr>
<td>Breaking capacity (2 poles connected in series, T2 = 15 ms)</td>
<td>DC, $U_{e}=1,200$ V</td>
<td>300 A</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>U_{e}</td>
<td>1,800 V</td>
<td>---</td>
<td>200 A</td>
<td>---</td>
</tr>
<tr>
<td>Breaking capacity (2 poles connected in series, T2 = 15 ms)</td>
<td>DC, $U_{e}=1,200$ V</td>
<td>1,400 A</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>U_{e}</td>
<td>1,800 V</td>
<td>800 A</td>
<td>1,200 A</td>
<td>1,400 A</td>
</tr>
<tr>
<td>Breaking capacity (2 poles connected in series, T2 = 15 ms)</td>
<td>DC, $U_{e}=1,200$ V</td>
<td>2,600 A</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>U_{e}</td>
<td>1,800 V</td>
<td>1,800 A</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Breaking capacity (per pole, T2 = 15 ms)</td>
<td>DC, $U_{e}=1,200$ V (2 poles connected in series, T2 = 15 ms)</td>
<td>2,000 A</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>U_{e}</td>
<td>1,800 V (T2 = 15 ms)</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Breaking capacity (per pole, T2 = 15 ms)</td>
<td>AC, $U_{e}=1,200$ V (f = 16.7 / 50 Hz)</td>
<td>1,000 A / 700 A</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>U_{e}</td>
<td>1,800 V (f = 16.7 / 50 Hz)</td>
<td>800 A / 500 A</td>
<td>900 A / 500 A</td>
<td>900 A / 1,000 A / 1,000 A</td>
</tr>
<tr>
<td>Breaking capacity (per pole, T2 = 15 ms)</td>
<td>AC, $U_{e}=1,200$ V (f = 16.7 / 50 Hz)</td>
<td>--- / ---</td>
<td>1,600 A / 900 A</td>
<td>--- / ---</td>
</tr>
<tr>
<td>U_{e}</td>
<td>1,800 V (f = 16.7 / 50 Hz)</td>
<td>--- / ---</td>
<td>1,600 A / 900 A</td>
<td>--- / ---</td>
</tr>
<tr>
<td>Rated short-time withstand current I_{th} (T < 100 ms)</td>
<td>5 kA</td>
<td>5 kA</td>
<td>8 kA 2</td>
<td>8 kA 2</td>
</tr>
<tr>
<td>Critical current range</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Main contacts</td>
<td>Contact material</td>
<td>AgSnO2 M10</td>
<td>AgSnO2 M12</td>
<td></td>
</tr>
<tr>
<td>Terminals</td>
<td>Torque</td>
<td>20 Nm max.</td>
<td>30 Nm max.</td>
<td></td>
</tr>
<tr>
<td>Auxiliary contacts</td>
<td>Number and type</td>
<td>1x S870 (a1), 1x S870 (b0), 2x S826 or 4x S826 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact material</td>
<td>Silver</td>
<td>Silver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S826 switching contacts (T = 5 ms)</td>
<td>Terminals</td>
<td>16 A at 24 V DC, 13.5 A at 80 V DC, 7 A at 110 V DC Screws M3 / Flat tabs 6.3 x 0.8 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic drive</td>
<td>Coil drive</td>
<td>PD3 / OV2</td>
<td>PD3 / OV2</td>
<td></td>
</tr>
<tr>
<td>Power loss / overvoltage category</td>
<td>24 / 36 / 48 / 72 / 110 V DC</td>
<td>24 / 36 / 48 / 72 / 110 V DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coil power consumption at U_{e} and T_{e} = 20 °C</td>
<td>cold coil: 70 W / warm coil: 50 W</td>
<td>cold coil: 70 W / warm coil: 50 W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pull-in, time, typical at T_{e} = 20 °C</td>
<td>85 ms</td>
<td>< 0.08 s U_{e}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drop-off, time, typical at T_{e} = 20 °C</td>
<td>50 ms</td>
<td>50 ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switching frequency at T_{e} = 20 °C and 1.25 U_{e}</td>
<td>Standard coil</td>
<td>Suppressor diode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of coil</td>
<td>Suppressor diode</td>
<td>Cage clamp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingress protection rating (IP code)</td>
<td>IP00</td>
<td>IP00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical endurance</td>
<td>> 2 million operating cycles</td>
<td>> 2 million operating cycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibration / Shock (EN 61373)</td>
<td>Category 1, Class B</td>
<td>Category 1, Class B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting position</td>
<td>horizontal / vertical</td>
<td>horizontal / vertical 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient conditions</td>
<td>Operating temperature / storage temperature</td>
<td>-40 °C ... +70 °C</td>
<td>-40 °C ... +70 °C</td>
<td></td>
</tr>
<tr>
<td>Altitude (EN 50125-1)</td>
<td>-40 °C ... +70 °C</td>
<td>< 2,000 m above sea level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>< 75% yearly average</td>
<td>< 75% yearly average</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>18 kg</td>
<td>22 kg</td>
<td>30 kg</td>
<td>35 kg</td>
</tr>
</tbody>
</table>

*1 With frequent switching under load the conv. thermal current I_{th} must be limited to 350 A.

*2 Preliminary values

*3 Double pole power contactors for AC and DC Series CT, 2 pole

*4 and 5 according to IEC60077

*6 For frequent load switching use contactors for vertical mounting (red lock bars).
CT1215/04 Dimension diagram double pole NO contactor for 1,500 V / 400 A (standard version) Series CT, 2 pole

CT1215/08 Dimension diagram double pole NO contactor for 1,500 V / 800 A (standard version) Series CT, 2 pole

*M Minimum clearance: Interrupting at maximum capacity could require larger clearance! Feel free to contact us, we will be happy to assist you with dimensioning.

Dimensions in mm
CT1230/04 Dimension diagram double pole NO contactor for 3,000 V / 400 A (standard version)
Series CT, 2 pole

CT1230/08 Dimension diagram double pole NO contactor for 3,000 V / 800 A (standard version)
Series CT, 2 pole

Minimum clearance: Interrupting at maximum capacity could require larger clearance! Feel free to contact us, we will be happy to assist you with dimensioning.
Start up
Before initial start up make sure that:

- the arc chute is mounted properly and the lock bars are locked in position
- the protective covers are mounted properly
- the contactor is earthed (PE terminal on mounting plate)

Removal of arc chute
1. Push both release sliders in the direction indicated by the arrow and hold them in this position.
2. Move all four levers for unlocking the arc chute in the direction indicated by the arrow.
3. The arc chute incorporating the stationary main contacts can now be lifted from the contactor.

Mounting the arc chute
1. Mount the arc chute onto the magnetic drive. Note: The arc chute has keys on one side to fit into slots on the corresponding side of the contactor. So you cannot mount it the wrong way round.
2. Move all four levers for unlocking the arc chute into the original position.
3. Check: The arc chute is locked properly, if all four lock bars click into place and cannot be opened without pushing the release slider.

Removal of protective covers
- Protective cover auxiliary switches: Dismount arc chute first, then loosen knurled head screws and remove protective cover.
- Protective cover coil terminals: Unscrew cover and take it off.

Mounting of protective covers
- Protective cover auxiliary switches: Position protective cover and screw in both knurled head screws. Then mount arc chute.
- Protective cover coil terminals: Introduce protective cover into the groove of the coil drive and locate in position. Then tighten screws.

Dimensioning instructions
- Do you need some help? For selecting the contactor that suits your application best do not hesitate to ask our advice.
- For dimensioning CT12xx/xx Series contactors please observe the following instructions:
 1. For connection of the main contacts Schaltbau recommends the use of busbars with the following dimensioning:
 - Conv. thermal current I_{th} = 400 A: 60 x 5 mm
 - Conv. thermal current I_{th} = 800 A: 80 x 8 mm
 2. Observe clearance of live parts to arc chute! Refer to dimension drawings on page 4 and 5 for data.
 3. CT1230/08: For frequent load switching use contactors for vertical mounting (red lock bars).
 4. For nominal voltages U_{N} ≥ 3,000 V DC ask for our special design CT1230/08 ... 200.

Surge suppression
- CT12xx/04 Series with main contacts designed for I_{th}=400 A:
 Surge suppression/coil type »Tr«: Standard coil with suppressor diode. The use of a suppressor diode for limiting transient overvoltages occurring on opening of the coil is optimally attuned to the contactor’s switching behaviour. The existing opening characteristic must not be negatively influenced by parallel connection with an external diode.
- CT12xx/08 Series with main contacts designed for I_{th}=800 A:
 Surge suppression/coil type »Cm«: Double coil with integrated double coil controller (DCC module). Observe correct polarity of coil terminals. Do not add any extra suppressor diodes to the configuration.

Circuit diagrams

Versions to industry standard

2x NO I_{th} = 400 A,
Standard coil,
Aux. contacts 4 x S826

2x NO I_{th} = 800 A,
Double coil with double coil controller,
Aux. contacts 4 x S826

Versions to railway standard IEC 60077

2x NO I_{th} = 400 A,
Standard coil,
Aux. contacts (IEC 60077) 2 x S826, 1 x S870, 1 x S870 (polar)

2x NO I_{th} = 800 A,
Double coil with double coil controller,
Aux. contacts (IEC 60077) 2 x S826, 1 x S870, 1 x S870 (polar)
Mounting holes

- 2 pole standard contactor, CT1215/04, CT1230/04 Series
- 2 pole standard contactor CT1215/08, CT1230/08 Series

Spare parts

<table>
<thead>
<tr>
<th>Items</th>
<th>Spare part, description</th>
<th>Ordering code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Set of two stationary contacts</td>
<td>CT1215/04: MC CT1015/04, CT1230/04: MC CT1030/04, CT1215/08: MC CT1015/08, CT1230/08: MC CT1030/08</td>
</tr>
<tr>
<td>1</td>
<td>Contact bridge with mounted contact holder, mounting position »H« horizontal</td>
<td>CT1215/04: CBH CT1215/04, CT1230/04: CBH CT1230/04, CT1215/08: CBH CT1215/08, CT1230/08: CBH CT1230/08</td>
</tr>
<tr>
<td>1</td>
<td>Contact bridge with mounted contact holder, mounting position »V« vertical</td>
<td>CT1215/04: CBV CT1215/04, CT1230/04: CBV CT1230/04, CT1215/08: CBV CT1215/08, CT1230/08: CBV CT1230/08</td>
</tr>
<tr>
<td>1</td>
<td>Protective cover coil terminals</td>
<td>CT1215/04: CC CT1030/04, CT1230/04: CC CT1030/08, CT1215/08: CC CT1030/08, CT1230/08: CC CT1030/08</td>
</tr>
<tr>
<td>1</td>
<td>Protective cover aux. switches</td>
<td>CT1215/04: CA CT1030/04, CT1230/04: CA CT1030/08, CT1215/08: CA CT1030/08, CT1230/08: CA CT1030/08</td>
</tr>
<tr>
<td>1</td>
<td>Snap-action switch (SPDT)</td>
<td>CT1215/04: S826 a L, CT1230/04: S826 a L, CT1215/08: S826 a L, CT1230/08: S826 a L</td>
</tr>
<tr>
<td>1</td>
<td>Contact block of 2x S870 (momentary switches a1, b0)</td>
<td>CT1215/04: AS S870, CT1230/04: AS S870, CT1215/08: AS S870, CT1230/08: AS S870</td>
</tr>
</tbody>
</table>

Maintenance instructions

- CT12xx/xx Series contactors are maintenance free with normal use.
- Make regular inspections once or twice a year. So when installing the contactor, make sure that there is enough space to remove and replace the arc chute with ease and that the main contacts become accessible for inspection.
- Frequent switching or switching under high load may lead to increased wear of the main contacts. In this case replacement of the main contacts may become necessary. The design of the CT contactor series allows for easy replacement of the main contacts. For detailed information please refer to our manuals C21/04-M.en and C21/08-M.en respectively.

Safety instructions

- The switching device meets the requirements of basic insulation. Make sure the plate onto which the drive of the contactor is mounted is earthed in a vibration resistant way.
- Do not use contactor without properly mounted arc chute.
- The contactor has unprotected live parts and carries a label that warns of the hazard. This caution must be observed and the label must not be removed in any way.
- The required clearance of live parts to ground and other parts of the contactor is to be observed as well as the safety regulations of the applicable standards.
- Switching at maximum breaking capacity might require larger clearance! Do not hesitate to ask our advice for dimensioning.
- Do not use contactor without protective covers (for coil terminals and auxiliary switches).
- Coil suppression for reducing surges when the coil is switched off is optimally attuned to the contactor’s switching behaviour. The existing opening characteristic must not be negatively influenced by parallel connection with an external diode.
- Improper handling of the contactor, e.g. when hitting the floor with some impact, can result in breakage, visible cracks and deformation.

Defective parts must be replaced immediately!

Standards

- IEC 60077: Railway applications – Electric equipment for rolling stock
- EN 50124-1: Railway applications – Insulation coordination – Part 1: Basic requirements – Clearances and creepage distances for all electrical and electronic equipment
- IEC 61373: Railway applications - Rolling stock equipment - Shock and vibration tests

Dimensions in mm
Connectors
- Connectors manufactured to industry standards
- Connectors to suit the special requirements of communications engineering (MIL connectors)
- Charging connectors for battery-powered machines and systems
- Connectors for railway engineering, including UIC connectors
- Special connectors to suit customer requirements

Snap-action switches
- Snap-action switches with positive opening operation
- Snap-action switches with self-cleaning contacts
- Enabling switches
- Special switches to suit customer requirements

Contactors
- Single and multi-pole DC contactors
- High-voltage AC/DC contactors
- Contactors for battery powered vehicles and power supplies
- Contactors for railway applications
- Terminal bolts and fuse holders
- DC emergency disconnect switches
- Special contactors to suit customer requirements

Electrics for rolling stock
- Equipment for driver’s cab
- Equipment for passenger use
- High-voltage switchgear
- High-voltage heaters
- High-voltage roof equipment
- Equipment for electric brakes
- Design and engineering of train electrics to customer requirements